Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossy Compression of Exponential and Laplacian Sources using Expansion Coding (1308.2338v1)

Published 10 Aug 2013 in cs.IT and math.IT

Abstract: A general method of source coding over expansion is proposed in this paper, which enables one to reduce the problem of compressing an analog (continuous-valued source) to a set of much simpler problems, compressing discrete sources. Specifically, the focus is on lossy compression of exponential and Laplacian sources, which is subsequently expanded using a finite alphabet prior to being quantized. Due to decomposability property of such sources, the resulting random variables post expansion are independent and discrete. Thus, each of the expanded levels corresponds to an independent discrete source coding problem, and the original problem is reduced to coding over these parallel sources with a total distortion constraint. Any feasible solution to the optimization problem is an achievable rate distortion pair of the original continuous-valued source compression problem. Although finding the solution to this optimization problem at every distortion is hard, we show that our expansion coding scheme presents a good solution in the low distrotion regime. Further, by adopting low-complexity codes designed for discrete source coding, the total coding complexity can be tractable in practice.

Citations (10)

Summary

We haven't generated a summary for this paper yet.