Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Longtime behavior of coupled wave equations for semiconductor lasers (1308.2060v1)

Published 9 Aug 2013 in math.DS

Abstract: Coupled wave equations are popular tool for investigating longitudinal dynamical effects in semiconductor lasers, for example, sensitivity to delayed optical feedback. We study a model that consists of a hyperbolic linear system of partial differential equations with one spatial dimension, which is nonlinearly coupled with a slow subsystem of ordinary differential equations. We first prove the basic statements about the existence of solutions of the initial-boundary-value problem and their smooth dependence on initial values and parameters. Hence, the model constitutes a smooth infinite-dimensional dynamical system. Then we exploit the particular slow-fast structure of the system to construct a low-dimensional attracting invariant manifold for certain parameter constellations. The flow on this invariant manifold is described by a system of ordinary differential equations that is accessible to classical bifurcation theory and numerical tools such as AUTO.

Summary

We haven't generated a summary for this paper yet.