Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters (1308.1768v3)

Published 8 Aug 2013 in math.ST and stat.TH

Abstract: Maximum entropy models, motivated by applications in neuron science, are natural generalizations of the $\beta$-model to weighted graphs. Similar to the $\beta$-model, each vertex in maximum entropy models is assigned a potential parameter, and the degree sequence is the natural sufficient statistic. Hillar and Wibisono (2013) has proved the consistency of the maximum likelihood estimators. In this paper, we further establish the asymptotic normality for any finite number of the maximum likelihood estimators in the maximum entropy models with three types of edge weights, when the total number of parameters goes to infinity. Simulation studies are provided to illustrate the asymptotic results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.