Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Swarm Cellular PSO based on Clonal Selection Algorithm in Dynamic Environments (1308.1484v1)

Published 7 Aug 2013 in cs.NE and cs.AI

Abstract: Many real-world problems are dynamic optimization problems. In this case, the optima in the environment change dynamically. Therefore, traditional optimization algorithms disable to track and find optima. In this paper, a new multi-swarm cellular particle swarm optimization based on clonal selection algorithm (CPSOC) is proposed for dynamic environments. In the proposed algorithm, the search space is partitioned into cells by a cellular automaton. Clustered particles in each cell, which make a sub-swarm, are evolved by the particle swarm optimization and clonal selection algorithm. Experimental results on Moving Peaks Benchmark demonstrate the superiority of the CPSOC its popular methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.