Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial-Aware Dictionary Learning for Hyperspectral Image Classification (1308.1187v1)

Published 6 Aug 2013 in cs.CV and cs.LG

Abstract: This paper presents a structured dictionary-based model for hyperspectral data that incorporates both spectral and contextual characteristics of a spectral sample, with the goal of hyperspectral image classification. The idea is to partition the pixels of a hyperspectral image into a number of spatial neighborhoods called contextual groups and to model each pixel with a linear combination of a few dictionary elements learned from the data. Since pixels inside a contextual group are often made up of the same materials, their linear combinations are constrained to use common elements from the dictionary. To this end, dictionary learning is carried out with a joint sparse regularizer to induce a common sparsity pattern in the sparse coefficients of each contextual group. The sparse coefficients are then used for classification using a linear SVM. Experimental results on a number of real hyperspectral images confirm the effectiveness of the proposed representation for hyperspectral image classification. Moreover, experiments with simulated multispectral data show that the proposed model is capable of finding representations that may effectively be used for classification of multispectral-resolution samples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ali Soltani-Farani (2 papers)
  2. Hamid R. Rabiee (85 papers)
  3. Seyyed Abbas Hosseini (1 paper)
Citations (121)

Summary

We haven't generated a summary for this paper yet.