Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Extrema in Dynamic Environment using Multi-Swarm Cellular PSO with Local Search (1307.8279v1)

Published 31 Jul 2013 in cs.AI and cs.NE

Abstract: Many real-world phenomena can be modelled as dynamic optimization problems. In such cases, the environment problem changes dynamically and therefore, conventional methods are not capable of dealing with such problems. In this paper, a novel multi-swarm cellular particle swarm optimization algorithm is proposed by clustering and local search. In the proposed algorithm, the search space is partitioned into cells, while the particles identify changes in the search space and form clusters to create sub-swarms. Then a local search is applied to improve the solutions in the each cell. Simulation results for static standard benchmarks and dynamic environments show superiority of the proposed method over other alternative approaches.

Citations (11)

Summary

We haven't generated a summary for this paper yet.