Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying least absolute deviation regression to regression-type estimation of the index of a stable distribution using the characteristic function (1307.8270v1)

Published 31 Jul 2013 in stat.CO

Abstract: Least absolute deviation regression is applied using a fixed number of points for all values of the index to estimate the index and scale parameter of the stable distribution using regression methods based on the empirical characteristic function. The recognized fixed number of points estimation procedure uses ten points in the interval zero to one, and least squares estimation. It is shown that using the more robust least absolute regression based on iteratively re-weighted least squares outperforms the least squares procedure with respect to bias and also mean square error in smaller samples.

Summary

We haven't generated a summary for this paper yet.