Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TOFEC: Achieving Optimal Throughput-Delay Trade-off of Cloud Storage Using Erasure Codes (1307.8083v1)

Published 30 Jul 2013 in cs.NI, cs.IR, and cs.PF

Abstract: Our paper presents solutions using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller segments) together to significantly improve the delay performance of uploading and downloading data in and out of cloud storage. TOFEC is a strategy that helps front-end proxy adapt to level of workload by treating scalable cloud storage (e.g. Amazon S3) as a shared resource requiring admission control. Under light workloads, TOFEC creates more smaller chunks and uses more parallel connections per file, minimizing service delay. Under heavy workloads, TOFEC automatically reduces the level of chunking (fewer chunks with increased size) and uses fewer parallel connections to reduce overhead, resulting in higher throughput and preventing queueing delay. Our trace-driven simulation results show that TOFEC's adaptation mechanism converges to an appropriate code that provides the optimal delay-throughput trade-off without reducing system capacity. Compared to a non-adaptive strategy optimized for throughput, TOFEC delivers 2.5x lower latency under light workloads; compared to a non-adaptive strategy optimized for latency, TOFEC can scale to support over 3x as many requests.

Citations (75)

Summary

We haven't generated a summary for this paper yet.