Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MacWilliams Extension Theorems and the Local-Global Property for Codes over Rings (1307.7159v2)

Published 26 Jul 2013 in cs.IT, math.IT, and math.RA

Abstract: The MacWilliams extension theorem is investigated for various weight functions over finite Frobenius rings. The problem is reformulated in terms of a local-global property for subgroups of the general linear group. Among other things, it is shown that the extension theorem holds true for poset weights if and only if the underlying poset is hierarchical. Specifically, the Rosenbloom-Tsfasman weight for vector codes satisfies the extension theorem, whereas the Niederreiter-Rosenbloom-Tsfasman weight for matrix codes does not. A short character-theoretic proof of the well-known MacWilliams extension theorem for the homogeneous weight is provided. Moreover it is shown that the extension theorem carries over to direct products of weights, but not to symmetrized products.

Citations (8)

Summary

We haven't generated a summary for this paper yet.