Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Biclique Covers and Partitions (1307.6363v2)

Published 24 Jul 2013 in math.CO

Abstract: The biclique cover number (resp. biclique partition number) of a graph $G$, $\mathrm{bc}(G$) (resp. $\mathrm{bp}(G)$), is the least number of biclique (complete bipartite) subgraphs that are needed to cover (resp. partition) the edges of $G$. The \emph{local biclique cover number} (resp. local biclique partition number) of a graph $G$, $\mathrm{lbc}(G$) (resp. $\mathrm{lbp}(G)$), is the least $r$ such that there is a cover (resp. partition) of the edges of $G$ by bicliques with no vertex in more than $r$ of these bicliques. We show that $\mathrm{bp}(G)$ may be bounded in terms of $\mathrm{bc}(G)$, in particular, $\mathrm{bp}(G)\leq \frac{1}{2}(3\mathrm{bc(G)}-1)$. However, the analogous result does not hold for the local measures. Indeed, in our main result, we show that $\mathrm{lbp}(G)$ can be arbitrarily large, even for graphs with $\mathrm{lbc}(G)=2$. For such graphs, $G$, we try to bound $\mathrm{lbp}(G)$ in terms of additional information about biclique covers of $G$. We both answer and leave open questions related to this. There is a well known link between biclique covers and subcube intersection graphs. We consider the problem of finding the least $r(n)$ for which every graph on $n$ vertices can be represented as a subcube intersection graph in which every subcube has dimension $r$. We reduce this problem to the much studied question of finding the least $d(n)$ such that every graph on $n$ vertices is the intersection graph of subcubes of a $d$-dimensional cube.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)