Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiality of derivations on the algebra of $τ$-compact operators (1307.5365v1)

Published 20 Jul 2013 in math.OA

Abstract: This paper is devoted to derivations on the algebra $S_0(M, \tau)$ of all $\tau$-compact operators affiliated with a von Neumann algebra $M$ and a faithful normal semi-finite trace $\tau.$ The main result asserts that every $t_\tau$-continuous derivation $D:S_0(M, \tau)\rightarrow S_0(M, \tau)$ is spatial and implemented by a $\tau$-measurable operator affiliated with $M$, where $t_\tau$ denotes the measure topology on $S_0(M, \tau)$. We also show the automatic $t_\tau$-continuity of all derivations on $S_0(M, \tau)$ for properly infinite von Neumann algebras $M$. Thus in the properly infinite case the condition of $t_\tau$-continuity of the derivation is redundant for its spatiality.

Summary

We haven't generated a summary for this paper yet.