Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local-global questions for tori over $p$-adic function fields (1307.4782v3)

Published 17 Jul 2013 in math.NT and math.AG

Abstract: We study local-global questions for Galois cohomology over the function field of a curve defined over a p-adic field (a field of cohomological dimension 3). We define Tate-Shafarevich groups of a commutative group scheme via cohomology classes locally trivial at each completion of the base field coming from a closed point of the curve. In the case of a torus we establish a perfect duality between the first Tate-Shafarevich group of the torus and the second Tate-Shafarevich group of the dual torus. As an application, we show that the failure of the local-global principle for rational points on principal homogeneous spaces under tori is controlled by a certain subquotient of a third etale cohomology group. We also prove a generalization to principal homogeneous spaces of certain reductive group schemes in the case when the base curve has good reduction.

Summary

We haven't generated a summary for this paper yet.