Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

The Fitness Level Method with Tail Bounds (1307.4274v1)

Published 16 Jul 2013 in cs.NE

Abstract: The fitness-level method, also called the method of f-based partitions, is an intuitive and widely used technique for the running time analysis of randomized search heuristics. It was originally defined to prove upper and lower bounds on the expected running time. Recently, upper tail bounds were added to the technique; however, these tail bounds only apply to running times that are at least twice as large as the expectation. We remove this restriction and supplement the fitness-level method with sharp tail bounds, including lower tails. As an exemplary application, we prove that the running time of randomized local search on OneMax is sharply concentrated around n ln n - 0.1159 n.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)