Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-driven Study of Influences in Twitter Communities (1307.4264v1)

Published 16 Jul 2013 in cs.SI and physics.soc-ph

Abstract: This paper presents a quantitative study of Twitter, one of the most popular micro-blogging services, from the perspective of user influence. We crawl several datasets from the most active communities on Twitter and obtain 20.5 million user profiles, along with 420.2 million directed relations and 105 million tweets among the users. User influence scores are obtained from influence measurement services, Klout and PeerIndex. Our analysis reveals interesting findings, including non-power-law influence distribution, strong reciprocity among users in a community, the existence of homophily and hierarchical relationships in social influences. Most importantly, we observe that whether a user retweets a message is strongly influenced by the first of his followees who posted that message. To capture such an effect, we propose the first influencer (FI) information diffusion model and show through extensive evaluation that compared to the widely adopted independent cascade model, the FI model is more stable and more accurate in predicting influence spreads in Twitter communities.

Citations (10)

Summary

We haven't generated a summary for this paper yet.