Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving MUC extraction thanks to local search (1307.3585v1)

Published 12 Jul 2013 in cs.AI

Abstract: ExtractingMUCs(MinimalUnsatisfiableCores)fromanunsatisfiable constraint network is a useful process when causes of unsatisfiability must be understood so that the network can be re-engineered and relaxed to become sat- isfiable. Despite bad worst-case computational complexity results, various MUC- finding approaches that appear tractable for many real-life instances have been proposed. Many of them are based on the successive identification of so-called transition constraints. In this respect, we show how local search can be used to possibly extract additional transition constraints at each main iteration step. The approach is shown to outperform a technique based on a form of model rotation imported from the SAT-related technology and that also exhibits additional transi- tion constraints. Our extensive computational experimentations show that this en- hancement also boosts the performance of state-of-the-art DC(WCORE)-like MUC extractors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.