Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear dynamics in PT-symmetric lattices (1307.2973v1)

Published 11 Jul 2013 in nlin.SI, math-ph, and math.MP

Abstract: We consider nonlinear dynamics in a finite parity-time-symmetric chain of the discrete nonlinear Schr{\"o}dinger (dNLS) type. We work in the range of the gain and loss coefficient when the zero equilibrium state is neutrally stable. We prove that the solutions of the dNLS equation do not blow up in a finite time and the trajectories starting with small initial data remain bounded for all times. Nevertheless, for arbitrary values of the gain and loss parameter, there exist trajectories starting with large initial data that grow exponentially fast for larger times with a rate that is rigorously identified. Numerical computations illustrate these analytical results for dimers and quadrimers.

Summary

We haven't generated a summary for this paper yet.