Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Compressed Sensing Based on Random Graphs (1307.2117v1)

Published 8 Jul 2013 in cs.IT and math.IT

Abstract: Finding a suitable measurement matrix is an important topic in compressed sensing. Though the known random matrix, whose entries are drawn independently from a certain probability distribution, can be used as a measurement matrix and recover signal well, in most cases, we hope the measurement matrix imposed with some special structure. In this paper, based on random graph models, we show that the mixed symmetric random matrices, whose diagonal entries obey a distribution and non-diagonal entries obey another distribution, can be used to recover signal successfully with high probability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.