Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Examining the Classification Accuracy of TSVMs with ?Feature Selection in Comparison with the GLAD Algorithm (1307.1387v1)

Published 4 Jul 2013 in cs.LG and cs.CE

Abstract: Gene expression data sets are used to classify and predict patient diagnostic categories. As we know, it is extremely difficult and expensive to obtain gene expression labelled examples. Moreover, conventional supervised approaches cannot function properly when labelled data (training examples) are insufficient using Support Vector Machines (SVM) algorithms. Therefore, in this paper, we suggest Transductive Support Vector Machines (TSVMs) as semi-supervised learning algorithms, learning with both labelled samples data and unlabelled samples to perform the classification of microarray data. To prune the superfluous genes and samples we used a feature selection method called Recursive Feature Elimination (RFE), which is supposed to enhance the output of classification and avoid the local optimization problem. We examined the classification prediction accuracy of the TSVM-RFE algorithm in comparison with the Genetic Learning Across Datasets (GLAD) algorithm, as both are semi-supervised learning methods. Comparing these two methods, we found that the TSVM-RFE surpassed both a SVM using RFE and GLAD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.