Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Recursive Bayesian Initialization of Localization Based on Ranging and Dead Reckoning (1307.1061v1)

Published 3 Jul 2013 in cs.RO and cs.MA

Abstract: The initialization of the state estimation in a localization scenario based on ranging and dead reckoning is studied. Specifically, we start with a cooperative localization setup and consider the problem of recursively arriving at a uni-modal state estimate with sufficiently low covariance such that covariance based filters can be used to estimate an agent's state subsequently. A number of simplifications/assumptions are made such that the estimation problem can be seen as that of estimating the initial agent state given a deterministic surrounding and dead reckoning. This problem is solved by means of a particle filter and it is described how continual states and covariance estimates are derived from the solution. Finally, simulations are used to illustrate the characteristics of the method and experimental data are briefly presented.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.