Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Principal Component Analysis for High Dimensional Vector Autoregressive Models (1307.0164v1)

Published 30 Jun 2013 in stat.ML

Abstract: We study sparse principal component analysis for high dimensional vector autoregressive time series under a doubly asymptotic framework, which allows the dimension $d$ to scale with the series length $T$. We treat the transition matrix of time series as a nuisance parameter and directly apply sparse principal component analysis on multivariate time series as if the data are independent. We provide explicit non-asymptotic rates of convergence for leading eigenvector estimation and extend this result to principal subspace estimation. Our analysis illustrates that the spectral norm of the transition matrix plays an essential role in determining the final rates. We also characterize sufficient conditions under which sparse principal component analysis attains the optimal parametric rate. Our theoretical results are backed up by thorough numerical studies.

Citations (8)

Summary

We haven't generated a summary for this paper yet.