Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperspectral Data Unmixing Using GNMF Method and Sparseness Constraint (1307.0129v1)

Published 29 Jun 2013 in cs.CV

Abstract: Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Mixed pixels are pixels containing more than one distinct material called endmembers. The presence percentages of endmembers in mixed pixels are called abundance fractions. Spectral unmixing problem refers to decomposing these pixels into a set of endmembers and abundance fractions. Due to nonnegativity constraint on abundance fractions, nonnegative matrix factorization methods (NMF) have been widely used for solving spectral unmixing problem. In this paper we have used graph regularized (GNMF) method with sparseness constraint to unmix hyperspectral data. This method applied on simulated data using AVIRIS Indian Pines dataset and USGS library and results are quantified based on AAD and SAD measures. Results in comparison with other methods show that the proposed method can unmix data more effectively.

Citations (22)

Summary

We haven't generated a summary for this paper yet.