Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrinsic Jensen-Shannon Divergence: Applications to Variable-Length Coding (1307.0067v2)

Published 29 Jun 2013 in cs.IT, math.IT, math.OC, math.ST, and stat.TH

Abstract: This paper considers the problem of variable-length coding over a discrete memoryless channel (DMC) with noiseless feedback. The paper provides a stochastic control view of the problem whose solution is analyzed via a newly proposed symmetrized divergence, termed extrinsic Jensen-Shannon (EJS) divergence. It is shown that strictly positive lower bounds on EJS divergence provide non-asymptotic upper bounds on the expected code length. The paper presents strictly positive lower bounds on EJS divergence, and hence non-asymptotic upper bounds on the expected code length, for the following two coding schemes: variable-length posterior matching and MaxEJS coding scheme which is based on a greedy maximization of the EJS divergence. As an asymptotic corollary of the main results, this paper also provides a rate-reliability test. Variable-length coding schemes that satisfy the condition(s) of the test for parameters $R$ and $E$, are guaranteed to achieve rate $R$ and error exponent $E$. The results are specialized for posterior matching and MaxEJS to obtain deterministic one-phase coding schemes achieving capacity and optimal error exponent. For the special case of symmetric binary-input channels, simpler deterministic schemes of optimal performance are proposed and analyzed.

Citations (68)

Summary

We haven't generated a summary for this paper yet.