Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotics for weakly dependent errors-in-variables (1306.5311v1)

Published 22 Jun 2013 in math.ST, math.PR, and stat.TH

Abstract: Linear relations, containing measurement errors in input and output data, are taken into account in this paper. Parameters of these so-called errors-in-variables (EIV) models can be estimated by minimizing the total least squares (TLS) of the input-output disturbances. Such an estimate is highly non-linear. Moreover in some realistic situations, the errors cannot be considered as independent by nature. Weakly dependent (\alpha- and \phi-mixing) disturbances, which are not necessarily stationary nor identically distributed, are considered in the EIV model. Asymptotic normality of the TLS estimate is proved under some reasonable stochastic assumptions on the errors. Derived asymptotic properties provide necessary basis for the validity of block-bootstrap procedures.

Summary

We haven't generated a summary for this paper yet.