Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relations in universal Lie nilpotent associative algebras of class 4 (1306.4294v2)

Published 18 Jun 2013 in math.RA

Abstract: Let $K$ be a unital associative and commutative ring and let $K \langle X \rangle$ be the free unital associative $K$-algebra on a non-empty set $X$ of free generators. Define a left-normed commutator $[a_1, a_2, \dots , a_n]$ inductively by $[a_1, a_2] = a_1 a_2 - a_2 a_1$, $[a_1, \dots , a_{n-1}, a_n] = [[a_1, \dots , a_{n-1}], a_n]$ $(n \ge 3)$. For $n \ge 2$, let $T{(n)}$ be the two-sided ideal in $K \langle X \rangle$ generated by all commutators $[a_1,a_2, \dots , a_n]$ $( a_i \in K \langle X \rangle )$. It can be easily seen that the ideal $T{(2)}$ is generated (as a two-sided ideal in $K \langle X \rangle$) by the commutators $[x_1, x_2]$ $(x_i \in X)$. It is well-known that $T{(3)}$ is generated by the polynomials $[x_1,x_2,x_3]$ and $[x_1,x_2][x_3,x_4] + [x_1,x_3][x_2,x_4]$ $(x_i \in X)$. A similar generating set for $T{(4)}$ contains 3 types of polynomials in $x_i \in X$ if $\frac{1}{3} \in K$ and 5 types if $\frac{1}{3} \notin K$. In the present article we exhibit a generating set for $T{(5)}$ that contains 8 types of polynomials in $x_i \in X$.

Summary

We haven't generated a summary for this paper yet.