Papers
Topics
Authors
Recent
2000 character limit reached

Universal shocks in the Wishart random-matrix ensemble - a sequel

Published 17 Jun 2013 in math-ph and math.MP | (1306.4014v2)

Abstract: We study the diffusion of complex Wishart matrices and derive a partial differential equation governing the behavior of the associated averaged characteristic polynomial. In the limit of large size matrices, the inverse Cole-Hopf transform of this polynomial obeys a nonlinear partial differential equation whose solutions exhibit shocks at the evolving edges of the eigenvalue spectrum. In a particular scenario one of those shocks hits the origin that plays the role of an impassable wall. To investigate the universal behavior in the vicinity of this wall, a critical point, we derive an integral representation for the averaged characteristic polynomial and study its asymptotic behavior. The result is a Bessoid function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.