Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation of forward-reverse stochastic representations for conditional diffusions (1306.2452v2)

Published 11 Jun 2013 in math.PR

Abstract: In this paper we derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval, conditioned on the terminal state. The conditioning can be with respect to a fixed point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced in Milstein, Schoenmakers and Spokoiny [Bernoulli 10 (2004) 281-312] in the context of a forward-reverse transition density estimator. The corresponding Monte Carlo estimators have essentially root-$N$ accuracy, and hence they do not suffer from the curse of dimensionality. We provide a detailed convergence analysis and give a numerical example involving the realized variance in a stochastic volatility asset model conditioned on a fixed terminal value of the asset.

Summary

We haven't generated a summary for this paper yet.