Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Supremum of gamma-reflected Processes with Fractional Brownian Motion as Input (1306.2000v1)

Published 9 Jun 2013 in math.PR

Abstract: Let $X_H(t), t\ge 0$ be a fractional Brownian motion with Hurst index $H\in(0,1}$ and define a gamma-reflected process $W_\Ga(t)=X_H(t)-ct-\gammainf_{s\in[0,t]}\left(X_H(s)-cs \right)$, $t\ge0$ with $c>0,\gamma \in [0,1]$ two given constants. In this paper we establish the exact tail asymptotic behaviour of $\sup_{t\in [0,T]} W_\gamma(t)$ for any $T\in (0,\IF]$. Furthermore, we derive the exact tail asymptotic behaviour of the supremum of certain non-homogeneous mean-zero Gaussian random fields.

Summary

We haven't generated a summary for this paper yet.