Semigroups of Partial Isometries
Abstract: We study self-adjoint semigroups of partial isometries on a Hilbert space. These semigroups coincide precisely with faithful representations of abstract inverse semigroups. Groups of unitary operators are specialized examples of self-adjoint semigroups of partial isometries. We obtain a general structure result showing that every self-adjoint semigroup of partial isometries consists of "generalized weighted composition" operators on a space of square-integrable Hilbert-space valued functions. If the semigroup is irreducible and contains a compact operator then the underlying measure space is purely atomic, so that the semigroup is represented as "zero-unitary" matrices. In this case it is not even required that the semigroup be self-adjoint.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.