Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the value set of small families of polynomials over a finite field, I (1306.1744v3)

Published 7 Jun 2013 in math.NT and math.CO

Abstract: We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},..., a_{d-s} are fixed. Our estimate holds without restrictions on the characteristic of Fq and asserts that V(d,s,\bfs{a})=\mu_d.q+\mathcal{O}(1), where V(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}d{(-1){r-1}}/{r!} and \bfs{a}:=(a_{d-1},.., d_{d-s}). We provide an explicit upper bound for the constant underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the question to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. We show that the polynomials defining such complete intersections are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning the singular locus of the varieties under consideration, from which a suitable estimate on the number of Fq--rational points is established.

Summary

We haven't generated a summary for this paper yet.