Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis $\ell_1$-recovery with frames and Gaussian measurements (1306.1356v3)

Published 6 Jun 2013 in cs.IT and math.IT

Abstract: This paper provides novel results for the recovery of signals from undersampled measurements based on analysis $\ell_1$-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysis-sparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones and the uniform recovery guarantee is based on an analysis version of the null space property. Examining these conditions for Gaussian random matrices leads to precise bounds on the number of measurements required for successful recovery. In the special case of standard sparsity, our result improves a bound due to Rudelson and Vershynin concerning the exact reconstruction of sparse signals from Gaussian measurements with respect to the constant and extends it to stability under passing to approximately sparse signals and to robustness under noise on the measurements.

Summary

We haven't generated a summary for this paper yet.