Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wandering subspaces of the Bergman space and the Dirichlet space over polydisc (1306.0724v1)

Published 4 Jun 2013 in math.FA

Abstract: Doubly commutativity of invariant subspaces of the Bergman space and the Dirichlet space over the unit polydisc $\mathbb{D}n$ (with $ n \geq 2$) is investigated. We show that for any non-empty subset $\alpha={\alpha_1,\dots,\alpha_k}$ of ${1,\dots,n}$ and doubly commuting invariant subspace $\s$ of the Bergman space or the Dirichlet space over $\Dn$, the tuple consists of restrictions of co-ordinate multiplication operators $M_{\alpha}|\s:=(M{z_{\alpha_1}}|\s,\dots, M{z_{\alpha_k}}|\s)$ always possesses wandering subspace of the form [\bigcap{i=1}k(\s\ominus z_{\alpha_i}\s). ]

Summary

We haven't generated a summary for this paper yet.