Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks (1306.0322v3)

Published 3 Jun 2013 in cs.IT, cs.CC, cs.CG, math.IT, and q-bio.MN

Abstract: We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.

Citations (84)

Summary

We haven't generated a summary for this paper yet.