Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Local Active Contour Model for Image Segmentation with Intensity Inhomogeneity (1305.7053v1)

Published 30 May 2013 in cs.CV

Abstract: A novel locally statistical active contour model (ACM) for image segmentation in the presence of intensity inhomogeneity is presented in this paper. The inhomogeneous objects are modeled as Gaussian distributions of different means and variances, and a moving window is used to map the original image into another domain, where the intensity distributions of inhomogeneous objects are still Gaussian but are better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying a bias field with the original signal within the window. A statistical energy functional is then defined for each local region, which combines the bias field, the level set function, and the constant approximating the true signal of the corresponding object. Experiments on both synthetic and real images demonstrate the superiority of our proposed algorithm to state-of-the-art and representative methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.