Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Maximum Likelihood Approach to Estimating Correlation Functions (1305.4613v2)

Published 20 May 2013 in astro-ph.CO and astro-ph.IM

Abstract: We define a Maximum Likelihood (ML for short) estimator for the correlation function, {\xi}, that uses the same pair counting observables (D, R, DD, DR, RR) as the standard Landy and Szalay (1993, LS for short) estimator. The ML estimator outperforms the LS estimator in that it results in smaller measurement errors at any fixed random point density. Put another way, the ML estimator can reach the same precision as the LS estimator with a significantly smaller random point catalog. Moreover, these gains are achieved without significantly increasing the computational requirements for estimating {\xi}. We quantify the relative improvement of the ML estimator over the LS estimator, and discuss the regimes under which these improvements are most significant. We present a short guide on how to implement the ML estimator, and emphasize that the code alterations required to switch from a LS to a ML estimator are minimal.

Citations (4)

Summary

We haven't generated a summary for this paper yet.