Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardy-Sobolev inequalities for vector fields and canceling linear differential operators (1305.4262v2)

Published 18 May 2013 in math.FA

Abstract: Given a homogeneous k-th order differential operator $A (D)$ on $\mathbb{R}n$ between two finite dimensional spaces, we establish the Hardy inequality $$\int_{\mathbb{R}n} \frac{\lvert D{k-1}u\rvert}{\lvert x \rvert} \,\mathrm{d} x \leq C \int_{\mathbb{R}n} \lvert A(D)u\rvert $$ and the Sobolev inequality $$\lVert D{k-n} u\rVert_{L{\infty}(\mathbb{R}n)}\leq C \int_{\mathbb{R}n} \lvert A(D)u\rvert $$ when $A(D)$ is elliptic and satisfies a recently introduced cancellation property. We also study the necessity of these two conditions.

Summary

We haven't generated a summary for this paper yet.