Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Adaptive Dirichlet-Multinomial-like Processes (1305.3671v1)

Published 16 May 2013 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Online estimation and modelling of i.i.d. data for short sequences over large or complex "alphabets" is a ubiquitous (sub)problem in machine learning, information theory, data compression, statistical language processing, and document analysis. The Dirichlet-Multinomial distribution (also called Polya urn scheme) and extensions thereof are widely applied for online i.i.d. estimation. Good a-priori choices for the parameters in this regime are difficult to obtain though. I derive an optimal adaptive choice for the main parameter via tight, data-dependent redundancy bounds for a related model. The 1-line recommendation is to set the 'total mass' = 'precision' = 'concentration' parameter to m/2ln[(n+1)/m], where n is the (past) sample size and m the number of different symbols observed (so far). The resulting estimator (i) is simple, (ii) online, (iii) fast, (iv) performs well for all m, small, middle and large, (v) is independent of the base alphabet size, (vi) non-occurring symbols induce no redundancy, (vii) the constant sequence has constant redundancy, (viii) symbols that appear only finitely often have bounded/constant contribution to the redundancy, (ix) is competitive with (slow) Bayesian mixing over all sub-alphabets.

Citations (15)

Summary

We haven't generated a summary for this paper yet.