Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cancellation-Free Circuits in Unbounded and Bounded Depth (1305.3041v2)

Published 14 May 2013 in cs.CC

Abstract: We study the notion of "cancellation-free" circuits. This is a restriction of linear Boolean circuits (XOR circuits), but can be considered as being equivalent to previously studied models of computation. The notion was coined by Boyar and Peralta in a study of heuristics for a particular circuit minimization problem. They asked how large a gap there can be between the smallest cancellation-free circuit and the smallest linear circuit. We show that the difference can be a factor $\Omega(n/\log{2}n)$. This improves on a recent result by Sergeev and Gashkov who have studied a similar problem. Furthermore, our proof holds for circuits of constant depth. We also study the complexity of computing the Sierpinski matrix using cancellation-free circuits and give a tight $\Omega(n\log n)$ lower bound.

Citations (11)

Summary

We haven't generated a summary for this paper yet.