Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cold-start recommendation through granular association rules (1305.1372v1)

Published 7 May 2013 in cs.IR

Abstract: Recommender systems are popular in e-commerce as they suggest items of interest to users. Researchers have addressed the cold-start problem where either the user or the item is new. However, the situation with both new user and new item has seldom been considered. In this paper, we propose a cold-start recommendation approach to this situation based on granular association rules. Specifically, we provide a means for describing users and items through information granules, a means for generating association rules between users and items, and a means for recommending items to users using these rules. Experiments are undertaken on a publicly available dataset MovieLens. Results indicate that rule sets perform similarly on the training and the testing sets, and the appropriate setting of granule is essential to the application of granular association rules.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fan Min (14 papers)
  2. William Zhu (36 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.