Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Contraction Analysis of the Convergence of Risk-Sensitive Filters (1305.1268v1)

Published 6 May 2013 in math.OC and cs.SY

Abstract: A contraction analysis of risk-sensitive Riccati equations is proposed. When the state-space model is reachable and observable, a block-update implementation of the risk-sensitive filter is used to show that the N-fold composition of the Riccati map is strictly contractive with respect to the Riemannian metric of positive definite matrices, when N is larger than the number of states. The range of values of the risk-sensitivity parameter for which the map remains contractive can be estimated a priori. It is also found that a second condition must be imposed on the risk-sensitivity parameter and on the initial error variance to ensure that the solution of the risk-sensitive Riccati equation remains positive definite at all times. The two conditions obtained can be viewed as extending to the multivariable case an earlier analysis of Whittle for the scalar case.

Citations (39)

Summary

We haven't generated a summary for this paper yet.