Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective AI Planning: Comparing Aggregation and Pareto Approaches (1305.1169v1)

Published 6 May 2013 in cs.AI

Abstract: Most real-world Planning problems are multi-objective, trying to minimize both the makespan of the solution plan, and some cost of the actions involved in the plan. But most, if not all existing approaches are based on single-objective planners, and use an aggregation of the objectives to remain in the single-objective context. Divide and Evolve (DaE) is an evolutionary planner that won the temporal deterministic satisficing track at the last International Planning Competitions (IPC). Like all Evolutionary Algorithms (EA), it can easily be turned into a Pareto-based Multi-Objective EA. It is however important to validate the resulting algorithm by comparing it with the aggregation approach: this is the goal of this paper. The comparative experiments on a recently proposed benchmark set that are reported here demonstrate the usefulness of going Pareto-based in AI Planning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.