Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method (1305.0855v1)

Published 3 May 2013 in stat.ML and q-bio.PE

Abstract: We propose a new algorithm to do posterior sampling of Kingman's coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Monte Carlo procedure. We implement our algorithm as a C++ package, and demonstrate its utility via a parameter estimation task in population genetics on both single- and multiple-locus data. The experiment results show that the proposed algorithm performs comparable to or better than several well-developed methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.