Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The effect of the initial network configuration on preferential attachment (1305.0205v1)

Published 1 May 2013 in physics.soc-ph, cond-mat.stat-mech, cs.SI, and physics.data-an

Abstract: The classical preferential attachment model is sensitive to the choice of the initial configuration of the network. As the number of initial nodes and their degree grow, so does the time needed for an equilibrium degree distribution to be established. We study this phenomenon, provide estimates of the equilibration time, and characterize the degree distribution cutoff observed at finite times. When the initial network is dense and exceeds a certain small size, there is no equilibration and a suitable statistical test can always discern the produced degree distribution from the equilibrium one. As a by-product, the weighted Kolmogorov-Smirnov statistic is demonstrated to be more suitable for statistical analysis of power-law distributions with cutoff when the data is ample.

Citations (8)

Summary

We haven't generated a summary for this paper yet.