Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Short Paths on Polytopes by the Shadow Vertex Algorithm (1304.7235v1)

Published 26 Apr 2013 in cs.DS and math.CO

Abstract: We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope P = {x : Ax \leq b} along the edges of P, where A \in R{m \times n} is a real-valued matrix. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/delta that is a measure for the flatness of the vertices of P. For integer matrices A \in Z{m \times n} we show a connection between delta and the largest absolute value Delta of any sub-determinant of A, yielding a bound of O(Delta4 m n4) for the length of the computed path. This bound is expressed in the same parameter Delta as the recent non-constructive bound of O(Delta2 n4 \log (n Delta)) by Bonifas et al. For the special case of totally unimodular matrices, the length of the computed path simplifies to O(m n4), which significantly improves the previously best known constructive bound of O(m{16} n3 \log3(mn)) by Dyer and Frieze.

Citations (20)

Summary

We haven't generated a summary for this paper yet.