Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interprocedural Data Flow Analysis in Soot using Value Contexts (1304.6274v2)

Published 23 Apr 2013 in cs.PL

Abstract: An interprocedural analysis is precise if it is flow sensitive and fully context-sensitive even in the presence of recursion. Many methods of interprocedural analysis sacrifice precision for scalability while some are precise but limited to only a certain class of problems. Soot currently supports interprocedural analysis of Java programs using graph reachability. However, this approach is restricted to IFDS/IDE problems, and is not suitable for general data flow frameworks such as heap reference analysis and points-to analysis which have non-distributive flow functions. We describe a general-purpose interprocedural analysis framework for Soot using data flow values for context-sensitivity. This framework is not restricted to problems with distributive flow functions, although the lattice must be finite. It combines the key ideas of the tabulation method of the functional approach and the technique of value-based termination of call string construction. The efficiency and precision of interprocedural analyses is heavily affected by the precision of the underlying call graph. This is especially important for object-oriented languages like Java where virtual method invocations cause an explosion of spurious call edges if the call graph is constructed naively. We have instantiated our framework with a flow and context-sensitive points-to analysis in Soot, which enables the construction of call graphs that are far more precise than those constructed by Soot's SPARK engine.

Citations (54)

Summary

We haven't generated a summary for this paper yet.