Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized Complexity of the Anchored k-Core Problem for Directed Graphs (1304.5870v2)

Published 22 Apr 2013 in cs.DS

Abstract: Bhawalkar, Kleinberg, Lewi, Roughgarden, and Sharma [ICALP 2012] introduced the Anchored k-Core problem, where the task is for a given graph G and integers b, k, and p to find an induced subgraph H with at least p vertices (the core) such that all but at most b vertices (called anchors) of H are of degree at least k. In this paper, we extend the notion of k-core to directed graphs and provide a number of new algorithmic and complexity results for the directed version of the problem. We show that - The decision version of the problem is NP-complete for every k>=1 even if the input graph is restricted to be a planar directed acyclic graph of maximum degree at most k+2. - The problem is fixed parameter tractable (FPT) parameterized by the size of the core p for k=1, and W[1]-hard for k>=2. - When the maximum degree of the graph is at most \Delta, the problem is FPT parameterized by p+\Delta if k>= \Delta/2.

Citations (16)

Summary

We haven't generated a summary for this paper yet.