Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Constraints to Resolution Rules, Part I: Conceptual Framework (1304.3208v1)

Published 11 Apr 2013 in cs.AI

Abstract: Many real world problems naturally appear as constraints satisfaction problems (CSP), for which very efficient algorithms are known. Most of these involve the combination of two techniques: some direct propagation of constraints between variables (with the goal of reducing their sets of possible values) and some kind of structured search (depth-first, breadth-first,...). But when such blind search is not possible or not allowed or when one wants a 'constructive' or a 'pattern-based' solution, one must devise more complex propagation rules instead. In this case, one can introduce the notion of a candidate (a 'still possible' value for a variable). Here, we give this intuitive notion a well defined logical status, from which we can define the concepts of a resolution rule and a resolution theory. In order to keep our analysis as concrete as possible, we illustrate each definition with the well known Sudoku example. Part I proposes a general conceptual framework based on first order logic; with the introduction of chains and braids, Part II will give much deeper results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.