Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach (1304.2696v1)

Published 9 Apr 2013 in math.ST and stat.TH

Abstract: We wish to estimate conditional density using Gaussian Mixture Regression model with logistic weights and means depending on the covariate. We aim at selecting the number of components of this model as well as the other parameters by a penalized maximum likelihood approach. We provide a lower bound on penalty, proportional up to a logarithmic term to the dimension of each model, that ensures an oracle inequality for our estimator. Our theoretical analysis is supported by some numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.