Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Generating Decision Structures and Causal Explanations for Decision Making (1304.2376v1)

Published 27 Mar 2013 in cs.AI

Abstract: This paper examines two related problems that are central to developing an autonomous decision-making agent, such as a robot. Both problems require generating structured representafions from a database of unstructured declarative knowledge that includes many facts and rules that are irrelevant in the problem context. The first problem is how to generate a well structured decision problem from such a database. The second problem is how to generate, from the same database, a well-structured explanation of why some possible world occurred. In this paper it is shown that the problem of generating the appropriate decision structure or explanation is intractable without introducing further constraints on the knowledge in the database. The paper proposes that the problem search space can be constrained by adding knowledge to the database about causal relafions between events. In order to determine the causal knowledge that would be most useful, causal theories for deterministic and indeterministic universes are proposed. A program that uses some of these causal constraints has been used to generate explanations about faulty plans. The program shows the expected increase in efficiency as the causal constraints are introduced.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.