Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Large-scale Whole Genome Association Analysis (1304.2272v1)

Published 8 Apr 2013 in cs.CE, cs.MS, and q-bio.GN

Abstract: In order to associate complex traits with genetic polymorphisms, genome-wide association studies process huge datasets involving tens of thousands of individuals genotyped for millions of polymorphisms. When handling these datasets, which exceed the main memory of contemporary computers, one faces two distinct challenges: 1) Millions of polymorphisms come at the cost of hundreds of Gigabytes of genotype data, which can only be kept in secondary storage; 2) the relatedness of the test population is represented by a covariance matrix, which, for large populations, can only fit in the combined main memory of a distributed architecture. In this paper, we present solutions for both challenges: The genotype data is streamed from and to secondary storage using a double buffering technique, while the covariance matrix is kept across the main memory of a distributed memory system. We show that these methods sustain high-performance and allow the analysis of enormous dataset

Citations (4)

Summary

We haven't generated a summary for this paper yet.