Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decision Making with Interval Influence Diagrams (1304.1096v1)

Published 27 Mar 2013 in cs.AI

Abstract: In previous work (Fertig and Breese, 1989; Fertig and Breese, 1990) we defined a mechanism for performing probabilistic reasoning in influence diagrams using interval rather than point-valued probabilities. In this paper we extend these procedures to incorporate decision nodes and interval-valued value functions in the diagram. We derive the procedures for chance node removal (calculating expected value) and decision node removal (optimization) in influence diagrams where lower bounds on probabilities are stored at each chance node and interval bounds are stored on the value function associated with the diagram's value node. The output of the algorithm are a set of admissible alternatives for each decision variable and a set of bounds on expected value based on the imprecision in the input. The procedure can be viewed as an approximation to a full e-dimensional sensitivity analysis where n are the number of imprecise probability distributions in the input. We show the transformations are optimal and sound. The performance of the algorithm on an influence diagrams is investigated and compared to an exact algorithm.

Citations (46)

Summary

We haven't generated a summary for this paper yet.